Search results for "hexagonal boron nitride"
showing 6 items of 6 documents
High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition
2019
We report high room-temperature mobility in single layer graphene grown by Chemical Vapor Deposition (CVD) after wet transfer on SiO$_2$ and hexagonal boron nitride (hBN) encapsulation. By removing contaminations trapped at the interfaces between single-crystal graphene and hBN, we achieve mobilities up to$\sim70000cm^2 V^{-1} s^{-1}$ at room temperature and$\sim120000cm^2 V^{-1} s^{-1}$ at 9K. These are over twice those of previous wet transferred graphene and comparable to samples prepared by dry transfer. We also investigate the combined approach of thermal annealing and encapsulation in polycrystalline graphene, achieving room temperature mobilities$\sim30000 cm^2 V^{-1} s^{-1}$. These …
Excitons in few-layer hexagonal boron nitride: Davydov splitting and surface localization
2018
Hexagonal boron nitride (hBN) has been attracting great attention because of its strong excitonic effects. Taking into account few-layer systems, we investigate theoretically the effects of the number of layers on quasiparticle energies, absorption spectra, and excitonic states, placing particular focus on the Davydov splitting of the lowest bound excitons. We describe how the inter-layer interaction as well as the variation in electronic screening as a function of layer number $N$ affects the electronic and optical properties. Using both \textit{ab initio} simulations and a tight-binding model for an effective Hamiltonian describing the excitons, we characterize in detail the symmetry of t…
Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets
2020
International audience; Photoelectrochemical water splitting under visible light has attracted attention for renewable hydrogen production. Despite prevalent investigations, many challenges still hindered an efficient energy conversion, such as enhancing the reaction efficiency in visible light. Thus controlling the photoelectrode materials is an essential step in designing new materials for water splitting. CaCu3Ti4O12 (CCTO) has received great attention as photocatalyst under solar light due to its combined band gap as result of the presence in its structure of TiO2 active in UV light and CuO active under visible light. In this work, a cubic CCTO with different amount of exfoliated hexago…
Optical Contrast and Raman Spectroscopy Techniques Applied to Few-Layer 2D Hexagonal Boron Nitride
2019
The successful integration of few-layer thick hexagonal boron nitride (hBN) into devices based on two-dimensional materials requires fast and non-destructive techniques to quantify their thickness. Optical contrast methods and Raman spectroscopy have been widely used to estimate the thickness of two-dimensional semiconductors and semi-metals. However, they have so far not been applied to two-dimensional insulators. In this work, we demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hBN on SiO2/Si substrates, which was also measured by atomic force microscopy. Optical contrast of hBN on SiO2/Si substrates exhibits a linear trend with the number of h…
Hexagonal boron nitride luminescence dependent on vacuum level and surrounding gases
2015
Abstract Gas sensing properties of hBN powder bulk and nanosize were studied. It was demonstrated that for hBN powders with grain sizes of 70 nm, 1 μm and 5 μm the native defect-induced luminescence observed at 400 nm under 265 nm light excitation and room temperature is sensitive to oxygen gas reducing luminescence intensity. The highest value of luminescence intensity is reached when sample is in vacuum. Results obtained allow conclusion that the hBN powder is prospective for sensing of oxygen gas. Some material properties such as dependence of luminescence intensity on vacuum level and pumping time, ratio of luminescence intensity when sample is in vacuum and gas, its dependence on mater…
Extrinsic Effects on the Optical Properties of Surface Color Defects Generated in Hexagonal Boron Nitride Nanosheets
2021
Hexagonal boron nitride (hBN) is a wide-band gap van der Waals material able to host light-emitting centers behaving as single photon sources. Here, we report the generation of color defects in hBN nanosheets dispersed on different kinds of substrates by thermal treatment processes. The optical properties of these defects have been studied using microspectroscopy techniques and far-field simulations of their light emission. Using these techniques, we have found that subsequent ozone treatments of the deposited hBN nanosheets improve the optical emission properties of created defects, as revealed by their zero-phonon linewidth narrowing and reduction of background emission. Microlocalized co…